Cover image for
Title:
Thermodynamics and statistical mechanics : an integrated approach / M. Scott Shell, University of California, Santa Barbara.
Author:
Shell, M. Scott (Michael Scott), 1978-
Publication Information:
Cambridge : Cambridge University Press, 2015.
Call Number:
QC311 .S5136 2015
Abstract:
Learn classical thermodynamics alongside statistical mechanics and how macroscopic and microscopic ideas interweave with this fresh approach to the subjects.
ISBN:
9781107014534

9781107656789
Series:
Cambridge series in chemical engineering

Cambridge series in chemical engineering.
Physical Description:
xxii, 476 pages : illustrations ; 26 cm.
Contents:
Reference tables -- Table A: Counting and combinatorics formulae -- Table B: Useful integrals, expansions, and approximations -- Table C: Extensive thermodynamic potentials -- Table D: Intensive per-particle thermodynamic potentials for single component systems -- Table E: Thermodynamic calculus manipulations -- Table F: Measurable quantities -- Table G: Common single component statistical mechanical ensembles -- Table H: Fundamental physical constants -- 1. Introduction and guide for this text -- 2. Equilibrium and entropy -- 2.1. What is equilibrium? -- 2.2. Classical thermodynamics -- 2.3. Statistical mechanics -- 2.4. Comparison of classical thermodynamics and statistical mechanics -- 2.5. Combinatorial approaches to counting – Problems -- 3. Energy and how the microscopic world works -- 3.1. Quantum theory -- 3.2. The classical picture -- 3.3. Classical microstates illustrated with the ideal gas -- 3.4. Ranges of microscopic interactions and scaling with system size -- 3.5. From microscopic to macroscopic -- 3.6. Simple and lattice molecular models -- 3.7. A simple and widely relevant example: the two-state system -- Problems -- 4. Entropy and how the macroscopic world works -- 4.1. Microstate probabilities -- 4.2. The principle of equal a priori probabilities -- 4.3. Ensemble averages and time averages in isolated systems -- 4.4. Thermal equilibrium upon energy exchange -- 4.5. General forms for equilibrium and the principle of maximum entropy -- 4.6. The second law and internal constraints -- 4.7. Equivalence with the energy-minimum principle -- 4.8. Ensemble averages and Liouville's theorem in classical systems -- Problems -- 5. The fundamental equation -- 5.1. Equilibrium and derivatives of the entropy -- 5.2. Differential and integrated versions of the fundamental equations -- 5.3. Intensive forms and state functions -- Problems -- 6. The first law and reversibility -- 6.1. The first law for processes in closed systems -- 6.2. The physical interpretation of work -- 6.3. A classic example involving work and heat -- 6.4. Special processes and relationships to the fundamental equation -- 6.5. Baths as idealized environments -- 6.6. Types of processes and implications from the second law -- 6.7. Heat engines -- 6.8. Thermodynamics of open, steady-flow systems -- Problems -- 7. Legendre transforms and other potentials -- 7.1. New thermodynamic potentials from baths -- 7.2. Constant-temperature coupling to an energy bath -- 7.3. Complete thermodynamic information and natural variables -- 7.4. Legendre transforms: mathematical convention -- 7.5. Legendre transforms: thermodynamic convention -- 7.6. The Gibbs free energy -- 7.7. Physical rationale for Legendre transforms -- 7.8. Extremum principles with internal constraints -- 7.9. The enthalpy and other potentials -- 7.10. Integrated and derivative relations -- 7.11. Multicomponent and intensive versions -- 7.12. Summary and look ahead -- Problems -- 8. Maxwell relations and measurable properties -- 8.1. Maxwell relations -- 8.2. Measurable quantities -- 8.3. General considerations for calculus manipulations -- Problems -- 9. Gases -- 9.1. Microstates in monatomic ideal gases -- 9.2. Thermodynamic properties of ideal gases -- 9.3. Ideal gas mixtures -- 9.4. Nonideal or "imperfect" gases -- 9.5. Nonideal gas mixtures -- Problems -- 10. Phase equilibrium -- 10.1. Conditions for phase equilibrium -- 10.2. Implications for phase diagrams -- 10.3. Other thermodynamic behaviors at a phase transition -- 10.4.Types of phase equilibrium -- 10.5. Microscopic view of phase equilibrium -- 10.6. Order parameters and general features of phase equilibrium -- Problems -- 11. Stability -- 11.1. Metastability -- 11.2. Common tangent line perspective on phase equilibrium -- 11.3. Limits of met stability -- 11.4. Generalized stability criteria -- Problems -- 12. Solutions: fundamentals -- 12.1. Ideal solutions -- 12.2. Ideal vapor-liquid equilibrium and Raoul’s law -- 12.3. Boiling-point elevation -- 12.4. Freezing-point depression -- 12.5. Osmotic pressure -- 12.6. Binary mixing with interactions -- 12.7. Nonideal solutions in general -- 12.8. The Gibbs-Durham relation -- 12.9. Partial molar quantities -- Problems -- 13. Solutions: advanced and special cases -- 13.1. Phenomenology of multicomponent vapor-liquid equilibrium -- 13.2. Models of multicomponent vapor-liquid equilibrium -- 13.3. Bubble- and dew-point calculations at constant pressure -- 13.4. Flash calculations at constant pressure and temperature -- 13.5. Relative volatility formulation -- 13.6. Nonideal mixtures -- 13.7. Constraints along mixture vapor-liquid phase boundaries -- 13.8. Phase equilibrium in polymer solutions -- 13.9. Strong electrolyte solutions -- Problems -- 14. Solids -- 14.1. General properties of solids -- 14.2. Solid-liquid equilibrium in binary mixtures -- 14.3. Solid-liquid equilibrium in multicomponent solutions -- 14.4. A microscopic view of perfect crystals -- 14.5. The Einstein model of perfect crystals -- 14.6. The Debye model of perfect crystals -- Problems -- 15. The third law -- 15.1. Absolute entropies and absolute zero -- 15.2. Finite entropies and heat capacities at absolute zero -- 15.3. Entropy differences at absolute zero -- 15.4. Attainability of absolute zero -- Problems -- 16. The canonical partition function -- 16.1. A review of basic statistical-mechanical concepts -- 16.2. Microscopic equilibrium in isolated systems -- 16.3. Microscopic equilibrium at constant temperature -- 16.4. Microstates and degrees of freedom -- 16.5. The canonical partition function for independent molecules -- Problems -- 17. Fluctuations -- 17.1. Distributions in the canonical ensemble -- 17.2. The canonical distribution of energies -- 17.3. Magnitude of energy fluctuations -- Problems -- 18. Statistical mechanics of classical systems -- 18.1. The classical canonical partition function -- 18.2. Microstate probabilities for continuous degrees of freedom -- 18.3. The Maxwell-Boltzmann distribution -- 18.4. The pressure in the canonical ensemble -- 18.5. The classical microcanonical partition function -- Problems -- 19. Other ensembles -- 19.1. The isothermal-isobaric ensemble -- 19.2. The grand canonical ensemble -- 19.3. Generalities and the Gibbs entropy formula -- Problems -- 20. Reaction equilibrium -- 20.1. A review of basic reaction concepts -- 20.2. Reaction equilibrium at the macroscopic level -- 20.3. Reactions involving ideal gases -- 20.4. Reactions involving ideal solutions -- 20.5. Temperature and pressure dependence of Keq -- 20.6. Reaction equilibrium at the microscopic level -- 20.7. Fluctuations -- Problems -- 21. Reaction coordinates and rates -- 21.1. Kinetics from statistical thermodynamics -- 21.2. Macroscopic considerations for reaction rates -- 21.3. Microscopic origins of rate coefficients -- 21.4. General considerations for rates of rare-event molecular processes -- Problems -- 22. Molecular simulation methods -- 22.1. Basic elements of classical simulation models -- 22.2. Molecular-dynamics simulation methods -- 22.3. Computing properties -- 22.4. Simulations of bulk phases -- 22.5. Monte Carlo simulation methods -- Problems
Copies: